

GARANT Master Steel MICRO solid carbide drill, plain shank DIN 6535 HA 12×D, AlCrN, Ø DC h6: 1,3mm

Order data	
Order data	
Order number	121226 1,3
GTIN	4062406580605
Item class	10F

Description

Version:

High-performance micro-drill for universal material use, focussing on steel processing. Maximum process reliability due to exactly matched tools within the overall system and expanded guide chamfers. Drilling of very small diameters down to the maximum depth after creating a pilot hole. Optimum compromise between core diameter and flute size for optimum chip evacuation – even with long-chipping materials. The increased metal removal rates and longer tool life ensure an economical drilling process, even with very small hole diameters combined with a large L/D ratio.

Note:

For reliable use of the micro-drills from $8\times D$, a **pilot hole** of **at least 4\times D** is required using the micro-pilot drill 121223. For vertical machining and flat workpiece surfaces, a pilot hole can be dispensed with from $D_C = \emptyset 1$ mm up to a length of $12\times D$. Please always ensure that the **pilot hole is free from chips** before using the subsequent drilling tool. We recommend setting a 90° counterbore with a suitable NC spotting drill after the pilot hole has been completed. For critical applications (e.g. highest possible production accuracy, minimal burr formation, reduced coolant pressure), reduce the feed rate of the tool by 50% before entering and exiting the material. Long-chipping materials may require **chips to be evacuated** in steps of $3\times D$ each by moving the drill back slightly at pilot hole depth. Please make sure that you use a suitable **tool clamping device** (shrink-fit chuck, hydraulic clamping chuck) with a radial run-out of less than 0.003 mm, a sufficiently high **coolant pressure** (at least 30 bar), as well as sufficiently fine **filtration** of the cooling medium ($D_C < \emptyset 2$ mm with filter ≤ 0.010 mm; $D_C < \emptyset 3$ mm filter ≤ 0.020 mm). The specified L/D ratio gives the **minimum achievable depth of hole** with the respective micro-drill. Flute length $L_C = L_2 + 1.5 \times D_C$.

Technical description

Feed f in steel < 1100 N/mm ²	< 1100 N/mm² 0.045 mm/rev.		
Overall length L	51 mm		
Number of cutting edges Z	2		
Feed f in stainless steel < 900 N/mm ²	0.024 mm/rev.		
Shank Ø D _s	3 mm		
Tolerance nominal Ø	h6		
Standard	Manufacturer's standard		
Nominal Ø D _c	1.3 mm		
recommended maximum drilling depth L ₂	16.2 mm		
Flute length L _c	18.2 mm		
Series	Master Steel		
Coating	AlCrN		
Tool material	Solid carbide		
Version	12×D		
Point angle	128 degrees		
Shank	DIN 6535 HA to h6		
Through-coolant	yes, with 25 bar		
Machining strategy	HPC		
Pilot drill required	yes, pilot drill		
Semi-Standard	yes		
Colour ring	green		
Type of product Jobber drill			

User data

	Suitability	\mathbf{V}_{c}	ISO code
Aluminium (short chipping)	suitable only under restricted conditions	50 m/min	N
Alu > 10% Si	suitable only under restricted conditions	50 m/min	N

Steel < 750 N/mm ²	suitable	80 m/min	Р
Steel < 900 N/mm ²	suitable	70 m/min	Р
Steel < 1100 N/mm ²	suitable	60 m/min	Р
Steel < 1400 N/mm ²	Suitable	50 m/min	Р
INOX < 900 N/mm ²	suitable	50 m/min	M
INOX > 900 N/mm ²	suitable	35 m/min	М
Ti > 850 N/mm ²	suitable	25 m/min	S
GG(G)	suitable	70 m/min	K
CuZn	suitable only under restricted conditions	50 m/min	N
Uni	suitable		
wet maximum	suitable		
wet minimum	suitable only under restricted conditions		